
Ultrafast equilibration of excited electrons in dynamical simulations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 485503

(http://iopscience.iop.org/0953-8984/21/48/485503)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 06:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/48
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 485503 (6pp) doi:10.1088/0953-8984/21/48/485503

Ultrafast equilibration of excited electrons
in dynamical simulations
Zhibin Lin1 and Roland E Allen

Department of Physics, Texas A&M University, College Station, TX 77843, USA

E-mail: allen@tamu.edu

Received 30 July 2009, in final form 18 October 2009
Published 6 November 2009
Online at stacks.iop.org/JPhysCM/21/485503

Abstract
In our density-functional-based simulations of materials responding to femtosecond-scale laser
pulses, we have observed a potentially useful phenomenon: the excited electrons automatically
equilibrate to a Fermi–Dirac distribution within ∼100 fs, solely because of their coupling to the
nuclear motion, even though the resulting electronic temperature is one to two orders of
magnitude higher than the kinetic temperature defined by the nuclear motion. Microscopic
simulations like these can then provide the separate electronic and kinetic temperatures,
chemical potentials, pressures, and nonhydrostatic stresses as input for studies on larger lengths
and timescales.

(Some figures in this article are in colour only in the electronic version)

1. Motivation

It has been experimentally observed in metals [1–7],
semiconductors [8–11], and other materials, including
graphite [12–14], that electrons tend to equilibrate first with
each other (within a few hundred femtoseconds or less) and
then with the motion of the nuclei (within a few picoseconds
or less) after the application of a femtosecond-scale laser pulse.
Immediately following application of the pulse, therefore,
the material is typically characterized by separate electronic
and kinetic (or ‘lattice’) temperatures [15–19]. There are,
of course, subtleties involving, for example, interaction of
electron and hole subsystems [20].

None of these equilibration processes can occur in a
simulation of the electron dynamics which is based on a mean-
field description such as time-dependent density-functional
theory [21, 22], if there is also no motion of the nuclei.
The mechanisms normally invoked for femtosecond-scale
equilibration of the electronic subsystem involve electron
correlations of one kind or another, which are omitted in a
mean-field treatment.

Here we find that there is a second mechanism for
femtosecond-scale equilibration of the electronic subsystem:
coupling of the electrons to the nuclear motion. This means

1 Present address: Renewable Energy Materials Research Science and
Engineering Center (REMRSEC), Department of Physics, Colorado School
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that electronic equilibration can occur even in mean-field sim-
ulations, including density-functional or density-functional-
based simulations, as long as the motion of the nuclei is in-
cluded. The timescale, and the interesting complications and
nuances of electronic equilibration (exemplified by observa-
tions like those of [14]) are certainly not well described in a
simulation which includes only this mechanism. Nevertheless,
if the coupling of the electrons to the electromagnetic field (or
other exciting perturbation) is correct, the initial value of the
electron temperature and chemical potential should also be re-
liable for those cases where the electronic energy is approx-
imately conserved during equilibration (and where subtleties
such as separate electron and hole temperatures are not im-
portant), since any mechanism or combination of mechanisms
that leads to a Fermi–Dirac distribution at fixed total energy
and number of particles will yield the same temperature and
chemical potential.

The result found below is thus potentially useful in
various contexts. For example, it means that microscopic
quantum simulations with a technique like the present one,
or those reviewed in [21] and [22], can provide an electronic
temperature Te, an electronic chemical potential μe, and a
kinetic temperature Tn (associated with nuclear motion) as
input into more macroscopic simulations on larger lengths and
timescales, in a multi-scale scheme which employs classical
descriptions such as a two-temperature model [15–19]. As
shown below, the present method can similarly provide the
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separate electronic and kinetic contributions to the pressure and
nonhydrostatic stresses for larger-scale calculations in such a
hierarchical scheme, via equations (16) and (17).

2. Method

We call our method semiclassical electron-radiation–ion
dynamics (SERID) to emphasize its central features and its
central approximation, which is a classical treatment of both
the radiation field and the nuclear motion. The electrons are
treated in a time-dependent density-functional-based picture,
and are represented by nonorthogonal basis functions which
move with the nuclei, so that the time-dependent Schrödinger
equation has the form [23, 24]

ih̄
∂

∂ t
ψn(t) = S−1 · H ·ψn(t) (1)

where S is the overlap matrix. The nuclear motion is described
by the Ehrenfest equation [23, 24]

M
d2 X

dt2
= −1

2

∑

n

ψ†
n ·

(
∂H

∂ X
− ih̄

∂S

∂ X

∂

∂ t

)
·ψn + h.c.− ∂Urep

∂ X
(2)

where X is any nuclear coordinate, M is the corresponding
mass, and ‘h.c.’ means ‘Hermitian conjugate’. The density-
functional-based Hamiltonian H , overlap matrix S, and
effective ion–ion interaction Urep are determined by the results
and methodology of Frauenheim and co-workers [26, 27],
which have proved successful in a wide variety of contexts.
Finally, the electrons are coupled to the radiation field through
the time-dependent Peierls substitution [24, 25].

H (�′, �) = H0(�
′, �)eiqA(t)·(X ′−X)/h̄c (3)

where A(t) is the vector potential and q = −e. Further details
of our general method are given elsewhere [28, 29].

We model any material by a supercell, with periodic
boundary conditions on the nuclear motion and electronic
density. The basis functions (‘atomic orbitals’) in a given cell
are labeled by the position R of the cell plus an index �̄ which
specifies a nucleus within the cell and an orbital centered on
that nucleus: � ↔ �̄,R. The one-electron states are taken to
have the Bloch form

ψn(�) = us(�̄; k)eik·R, n ↔ k, s. (4)

Substitution into (1) and (2) gives

ih̄
∑

�̄′
S̄(�̄; �̄′; k)

∂

∂ t
us(�

′; k) =
∑

�̄′
H̄(�̄; �̄′; k)us(�̄

′; k)

or

ih̄
∂

∂ t
us(k) = S(k)−1 · H̄(k) · us(k) (5)

and

M
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dt2
= −1

2

∑
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u†
s (k) ·

(
∂H̄(k)

∂ X
− ih̄

∂ S(k)

∂ X

∂

∂ t

)
· us(k)

+ h.c. − ∂Urep

∂ X
(6)

where the coordinate X is in the cell labeled by R, Urep

involves only the interactions of the nuclei in this cell with their
neighbors, and

S̄(�̄; �̄′; k) =
∑

R′−R

S(�̄, �̄′; R′ − R)eik·(R′−R) (7)

H̄ (�̄; �̄′; k) =
∑

R′−R

H (�̄, �̄′; R′ − R)eik·(R′−R). (8)

As mentioned above, simulations with the present
approach can also yield the ‘electronic stress tensor’ σ e

αβ ,
which can be defined by [30, 31].

σ e
αβ = − 1

V
∂Ee

∂ηαβ

(9)

where V is the volume of the system, ηαβ is the strain, α and β

are coordinate labels, and

Ee =
∑

n

ψ†
n · H ·ψn + Urep (10)

is the ‘electronic energy’, with the total energy equal to Ee plus
the kinetic energy of the nuclei (or, more precisely, of the ion
cores). Write ψn in terms of the instantaneous one-electron
eigenstates ψ̄ j :

ψn =
∑

j

cn, j ψ̄ j (11)

H · ψ̄ j = ε j S · ψ̄ j , ψ̄
†
i ·S · ψ̄ j = Nδi j (12)

where N is the number of cells. We then have

E =N
∑

j

n jε j + Urep (13)

where
n j =

∑

n

|cn, j |2, cn, j = ψ̄
†
j ·S ·ψn/N (14)

or

ns(k) =
∑

k,s ′
|cs ′,s(k)|2, cs ′,s(k) = ū†

s (k) · S ·us ′(k)

(15)
where ψ̄ j(�) = ūs(�̄; k) exp(ik · R). The fact that

ψ̄
†
j · S ·ψn =

∑

�̄,R;�̄′
ū†

s (�̄; k)ei(k′−k)·RS(�̄, �̄′; k′)us′(�̄′; k′)

= N
∑

�̄,�̄′
ū†

s (�̄; k′)S(�̄, �̄′; k′)us′(�̄′; k′)

has been used. (In the last step, k′ − k cannot be equal to a
nonzero reciprocal lattice vector because k and k′ are restricted
to the first Brillouin zone.) But since

∂ε j

∂ηαβ

= ∂ψ̄
†
j

∂ηαβ

· H · ψ̄ j + ψ̄
†
j · ∂H

∂ηαβ

· ψ̄ j + ψ̄
†
j · H · ∂ψ̄ j

∂ηαβ

= ε j
∂

∂ηαβ

(ψ̄
†
j ·S · ψ̄ j) − ε j

(
ψ̄

†
j · ∂S

∂ηαβ

· ψ̄ j

)

+ ψ̄
†
j · ∂H

∂ηαβ

· ψ̄ j = ψ̄
†
j ·

(
∂H

∂ηαβ

− ∂S

∂ηαβ

ε j

)
· ψ̄ j
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it follows that

σ e
αβ = − 1

V

[∑

j

n j ψ̄
†
j ·

(
∂H

∂ηαβ

− ∂S

∂ηαβ

ε j

)
· ψ̄ j + ∂Urep

∂ηαβ

]

= − 1

V

[∑

k,s

ns(k)ū†
s (k) ·

(
∂H̄(k)

∂ηαβ

− ∂S̄(k)

∂ηαβ

ε j

)
· ūs(k)

+ ∂Urep

∂ηαβ

]
(16)

where V is the volume of one cell. This has the same form
as equation (6), but the derivation and physical content are
different.

The above derivation is valid for any parameter λ that
changes the Hamiltonian and overlap matrices, with ηαβ → λ

and −Vσ e
αβ → ∂Ee/∂λ in (9), so the ‘electronic pressure’ is

given by

Pe = −
[∑

j

n j ψ̄
†
j ·

(
∂H

∂V − ∂S

∂V ε j

)
· ψ̄ j + ∂Urep

∂V

]

= −
[∑

k,s

ns(k)ū†
s (k) ·

(
∂H̄(k)

∂V
− ∂S̄(k)

∂V
ε j

)
· ūs(k)

+∂Urep

∂V

]
. (17)

It is straightforward to calculate the additional kinetic
contributions to the pressure and nonhydrostatic stresses using
standard molecular-dynamics methods [32, 33].

3. Results

The simulations reported here are for a double layer of
graphene, with each layer containing 112 carbon atoms.
Periodic boundary conditions are imposed in the lateral
directions, so the equations developed in the preceding section
are appropriate, with k and R two-dimensional vectors.
However, since the system is relatively large (with 896
orbitals), we take the electronic states as well as the nuclear
positions to be periodic; i.e., we take k = 0. In the
simulations reported below, the laser pulse had a duration
of 45 femtoseconds (FWHM), an effective photon energy of
1.55 eV, and a fluence of 3.0 kJ m−2, with the polarization
vector inclined at 45◦ with respect to the surface normal. A
time step of 50 attoseconds was used in numerically solving
both the time-dependent Schrödinger equation and the nuclear
equations of motion. Figure 1 shows the occupancy of
equation (15)

ns =
∑

s ′
|cs ′,s |2, cs ′,s = ū†

s · S ·us ′ (18)

for each electronic eigenstate labeled by s as a function of the
energy eigenvalue εs , at 10 and 55 fs, with the full duration of
the laser pulse extending from 10 to 100 fs.

Recall that the actual one-electron states are determined
by the time-dependent Schrödinger equation, equation (5),

ih̄
∂

∂ t
us = S̄−1 · H̄ · us (19)

Figure 1. Electron distribution ne(ε) for a double layer of graphene
subjected to a laser pulse with a 45 fs duration (FWHM) and an
effective photon energy of 1.55 eV. The pulse starts at 10 fs and ends
at 100 fs. Prior to the pulse, all states below the Fermi energy are
occupied, and all states above are unoccupied. At 55 fs, electronic
excitation has resulted in a distribution that is far out of equilibrium.

whereas the eigenstates are the solutions to

H̄ · ūs = εsS̄ · ūs . (20)

Figure 1 thus shows ne(ε), the occupancy of an eigenstate at a
given time as a function of its energy. For a fully equilibrated
Fermi–Dirac distribution at temperature Te we would have

ne(ε) = 1

1 + e(ε−μe)/kTe
. (21)

Although the system is initially equilibrated at a
temperature of 300 K, the initial electron distribution of
figure 1, at t = 10 fs, is essentially indistinguishable from a
step function. After one-half the full pulse duration, electrons
have been strongly excited over a range of several eV near the
Fermi surface, and the distribution is very far from equilibrium.
However, figure 2 shows that at the end of the pulse, t = 100 fs,
there is already a tendency for the electrons to form up into a
Fermi–Dirac distribution, via transitions between the energy
levels.

Figure 3 shows that the distribution ne(ε) at t = 200 fs
is very close to a proper Fermi–Dirac distribution. A fit of
equation (21) to the data, also shown in figure 3, yields an
electron temperature of 20 880 K (corresponding to 1.8 eV)
and a chemical potential of 0.75 eV relative to the initial Fermi
energy.

On the other hand, the average ‘lattice’ temperature Tn,
calculated from the kinetic energy of the nuclei, is found to be
860 K at 200 fs. This very substantial increase in the nuclear
kinetic energy results from modification of the interatomic
(Hellmann–Feynman) forces when the laser pulse promotes
large numbers of electrons to excited states. It is interesting to
observe the effect of Tn on the pair correlation function, which
is increasingly broadened by the thermal motion of the nuclei

3
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Figure 2. Electron distribution at 100 fs, exhibiting an approach to
equilibrium on this timescale.

Figure 3. Electron distribution at 200 fs. The dashed line is a fit to a
Fermi–Dirac distribution with an electron temperature of 20 880 K
and a chemical potential of 0.75 eV.

with increasing time, as can be seen in figure 4. However, Tn is
still one or two orders of magnitude less than Te.

To see whether this remarkable outcome is in fact due to
the nuclear motion, we repeated the simulation with exactly the
same laser pulse, but with the nuclei frozen in place. In figure 5
the electrons are again excited from initially occupied states
below the Fermi energy to initially unoccupied states above,
but there is no tendency toward equilibration.

In figure 6, which should be compared with figures 2
and 3, there is no tendency whatsoever for the electrons to
equilibrate, and there cannot be, of course, because there is no
perturbation from either a radiation field or nuclear motion to
induce electronic transitions after completion of the pulse. In
fact, many of the states in figure 6 never exhibit any transitions
at all, because there are selection rules which apply with the
perfect symmetry of the ground-state geometry, but which are

Figure 4. Pair correlation function at 10, 100, and 200 fs, with a
broadening that increases with time as the thermal motion of the
nuclei increases.

Figure 5. Electron distribution for the same laser pulse as in figure 1
but with the nuclei not allowed to move. The pulse again starts at
10 fs and finishes at 100 fs. At 55 fs, there is no tendency toward
electronic equilibration.

broken when this symmetry is broken by the complex nuclear
motion in the more physical simulation of figures 1–3.

The above results indicate that ion motion causes the
excited electrons to equilibrate within ∼100 fs. In order
to investigate how the electron equilibration time changes
with respect to the degree of laser excitation, we performed
simulations for two lower fluences, 1.0 and 1.3 kJ m−2, while
keeping the other properties of the laser pulse unchanged.
Just as in the case of the substantially higher fluence above
(3.0 kJ m−2), electrons were again found to rapidly equilibrate
as a result of ion motion. In figure 7, the electron distribution
is shown at 55 and 150 fs after application of a pulse with a
fluence of 1.3 kJ m−2. By fitting the electron distribution at
150 fs to the Fermi–Dirac function, one obtains an effective
electron temperature of 13 920 K (corresponding to 1.2 eV),

4
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Figure 6. Electron distributions at 100 and 200 fs, with the nuclei not
allowed to move. Notice that the electron distributions at these two
times are completely identical. I.e., there are no electronic transitions
because there are no perturbations from either the radiation field or
nuclear motion. Compare with figures 2 and 3.

Figure 7. Electron distribution at 55 and 150 fs for a laser fluence of
1.3 kJ m−2. The dashed line is a fit to a Fermi–Dirac distribution
with an electron temperature of 13 920 K and a chemical potential of
0.35 eV.

and a chemical potential of 0.35 eV relative to the initial Fermi
energy.

Note that the electron temperatures for the two fluences,
given by the Fermi–Dirac fits of figures 3 and 7 respectively,
are consistent with the amount of laser energy absorbed by
the material. On the other hand, the equilibration time is
shorter, about 50 fs, for the lower fluence. A still lower
equilibration time, less than 50 fs, was found for the still
lower fluence of 1.0 kJ m−2. This decrease in equilibration
time appears to be related to the fact that electrons are
excited to energies less far away from the Fermi level at the
lower fluences, while the sizable ion motion is still effective

in causing the excited electrons to equilibrate. It should
be mentioned that careful examination of figure 6 shows
that the occupancy at some energy levels does not exactly
correspond to a Fermi distribution, and precise convergence
to this distribution may require a considerably longer time than
the approximate equilibration observed here. Nevertheless, the
average relaxation times for the lower fluences are found to be
smaller than that at high fluence.

4. Conclusion

The above results demonstrate that equilibration of the
electronic subsystem on a femtosecond timescale results from
the coupling of electrons to nuclear motion, even when electron
correlations are completely omitted. The significance and
potential utility of this result are discussed in the first section,
so here we simply offer a qualitative explanation: the electrons
are coupled to the nuclear motion through equations (1)
and (2): the nuclear positions determine the electronic
Hamiltonian, so perturbations in the nuclear positions induce
electronic transitions, just as in our previous studies of
molecular processes [34], but with much greater frequency
in a metal or semimetal because the energy differences are
comparable to the effective phonon energies associated with
nuclear motion. The nuclei are also influenced by the electrons,
whose states determine the interatomic forces of equation (2).

We interpret the relevant aspect of the nuclear motion, in
this system with a sizable number of atoms, to be essentially
a random jiggling of the electrons that tends to randomize
their distribution among the available states—i.e., to maximize
their entropy. It is well known that maximization of the
entropy in a system of fermions at fixed energy and number
of particles leads to a Fermi–Dirac distribution with a well-
defined temperature Te and chemical potential μe [35]. In
future work, we plan to explore this phenomenon in other
materials. For heavier atoms one expects moderately longer
equilibration times, but still on a femtosecond scale.

In a comparison of the quasiparticle relaxation rates
obtained from time-resolved photoemission experiments and
ab initio calculations, the timescale was found to range from a
few hundreds of femtoseconds to tens of femtoseconds [12].
This appears to imply that the mechanism treated here is
comparable in importance to correlation effects, in the specific
context of ultrafast electron equilibration.
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